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System design of liquid rocket engines must consider engine performance, weight, cost, and reliability

requirements. A general design optimization framework has been developed in this paper to select the best system

parameters for liquid rocket engines with gas-generator cycles. The object is to maximize the specific impulse and

vacuum thrust-to-weight ratio of the engine with given system requirements and design assumptions by changing

thrust-chamber pressure andmixture ratio. The systemanalysis, alongwith the engineweight estimation, is based on

a modular scheme. Multidisciplinary design optimization formulations including multidisciplinary feasible and

collaborative optimization are used, evaluated, and compared during the optimization process. Several techniques of

multi-objective processing are also used to identify the Pareto frontier and the optimal compromise solutions. A

proposed cryogenic-propellant engine using liquid oxygen and hydrogen with a gas-generator cycle is studied as a

specific example. Moreover, uncertainties in the engine operation, such as thrust-chamber pressure and mixture

ratio, are taken into account as random variables in the reliability-based optimization. Results are presented to

illustrate the tradeoff between the engine performance and reliability requirements.

I. Introduction

L IQUID rocket engines (LREs) with gas-generator cycles have
been widely used in the field of space propulsion, due to their

relatively simple design, low development costs, high reliability, and
mature technology. Furthermore, they offer the possibility of varying
the thrust and propellant mixture ratio over a wide range as an open
cycle. These rocket engines consist of a number of common com-
ponents, such as the thrust chamber, gas generators, turbines, pumps,
pipelines, and valves. With few exceptions, system design of such
LREs must consider engine performance, weight, cost, and reli-
ability, which usually pose conflicting requirements. Optimization
studies for evaluating “what-if” scenarios and tradeoff studies are
thus conducted by the engine designers to select the best values of
engine parameters at the system level (including thrust-chamber
pressure, nozzle expansion ratio, and propellant mixture ratio) to
improve the LRE system performance while satisfying the launch
vehicle requirements.

Most of today’s engine design and optimization can be performed
using computer programs, which are usually specific to a particular
design organization and a certain category of application. These
programs range in fidelity and scope, from conceptual system-level
tools to high-fidelity computational fluid dynamics simulations.
Typically, the system-level tools use a modular analysis approach,
where individual engine components are modeled independently

using thermodynamic and other appropriate relationships, and these
separate modules are then integrated into a desired engine cycle by
means of conservation laws to be analyzed. Binder [1] introduced an
industry-standard LRE power balance tool, which keeps engine
component modules as functions in a standard library. Goertz [2]
proposed a modular procedure for system analysis of arbitrary LRE
cycles with different propellant combinations at the operating state
point. Manski et al. [3] developed a combined vehicle/propulsion
analysis tool and applied it to investigate the tradeoff between engine
performance and vehicle mass for single-stage-to-orbit feasibility
studies. To provide “quick-look” answers to propulsion system trade
studies for spacecraft or launch vehicle designers, Way and Olds [4]
created a Web-based code to simulate LRE combustion with
efficiencies for performance prediction. This model was updated,
especially with respect to the chemistry model, by Bradford [5] to a
commercial version. Cormier [6] and St. Germain [7] further devel-
oped a powerhead analysis code to provide a conceptual-level LRE
analysis tool for launch vehicle design and optimization in a timely
fashion. Similarly, Bradford et al. [8] produced a commercially
available propulsion modeling tool for use in the conceptual and
preliminary design of space transportation systems using LRE. Li
et al. [9] also investigated the modular simulation of LRE systems
incorporated in an expandable software package for the evaluation of
engine configurations. Recently, Isselhorst [10] reported a software
kernel capable of time-dependent simulation of the propulsion
system for the launch vehicle and stage analysis. To the authors’
knowledge, however, there has been little research on optimization of
LRE system parameters in the preliminary design stage from the
viewpoint of multidisciplinary design optimization (MDO).

In this paper, a design optimization framework has been developed
to select best values of system parameters for LREs with gas-
generator cycles. The optimization is aimed at maximizing the
specific impulse and vacuum thrust-to-weight ratio of an enginewith
given mission requirements and design assumptions by changing
thrust-chamber pressure and mixture ratio. MDO formulations
including multidisciplinary feasible (MDF) and collaborative opti-
mization (CO) are used, evaluated, and compared during the
optimization process, in which an optimization algorithm combining
the genetic algorithm and the gradient-based algorithm is employed
to achieve the global optimum solution. The MDO approaches are
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evaluated by applying them to a test problem: the system parameter
optimization for a proposed hydrogen–oxygen rocket engine with a
gas-generator cycle.

There are many techniques dealing with multi-objective problems
in tradeoff studies [11–13]. Designers usually have preferences
according to their own experience. Therefore, several methods of
multi-objective processing are investigated for the aforementioned
test problem, to obtain the Pareto frontier of two optimization
objectives. Then the optimal compromise solutions are identified.All
the results are compared against each other to show the impact of the
different methods on the design variables and objectives. The Pareto
frontier and optimal compromise solutions presented herein may
provide a reference for further engine designs.

Finally, uncertainties in the engine operation, such as thrust-
chamber pressure and mixture ratio, are also given preliminary
consideration. The reliability-based optimization is implemented for
a test case to obtain amore reliable LRE system designwith the offset
of a slight decrease in engine specific impulse.

II. LRE System Analysis

LRE system analysis is the foundation of the optimization of
system parameters, which provides the values for design variables
and parameters for design optimization through the thermodynamic
calculations, stationary performance analysis, and engine weight
estimation. All the codes are written in the object-oriented C++
programming language and structured to use input files wherever
possible so as to speed up interchange between new components,
save compile time, and facilitate the concurrent distributed
processing.

A. Performance Analysis

In the thermodynamic calculation, the combustion product
thermodynamic properties (which include the combustion gas tem-
perature, specific heat, and gas constant) are calculated by a legacy
code [14] using the minimization of free-energy method, given the
composition of the propellants, chamber pressure, and oxidizer-to-
fuel mixture ratio. The chemical properties for any of the generic
propellant types in the C-H-O-N system have been built into this
code.

Stationary performance analysis is the key to the simulation of the
LRE system. A modular approach is employed for the quantitative
analysis of the LRE feed system with gas-generator cycles. In the
component library (including the thrust chamber, gas generators,
turbines, pumps, pipelines, and valves), the stationary macroscopic
behavior (typically including the pressure, temperature, flow rate,
and power) of each module is simulated by the basic zero-
dimensional analytical model with some empirical correlations [15].
These models are then integrated into an overall engine framework
bymeans of conservation laws (i.e., the balance offlow, pressure, and
power). Reference [16] gives the details on such system modeling.
The simulation process for the present optimization study will be
outlined in Sec. III.B. For the engine designmode, a required thrust at
a selected ambient condition should be specified in the simulation.
The other input parameters include 1) thrust-chamber pressure and
ambient pressure at design altitude; 2) thrust-chamber and gas-
generator mixture ratios; 3) pump rotational speed and inlet pressure;
4) turbine pressure ratio and efficiency; and 5) valve, injector, and
heat-exchanger pressure-drop coefficients. Based on the data from
the stationary characteristics calculation along with thermodynamic
analysis, the LRE system performance can be determined for
evaluation.

B. Weight Model

The launch capability and cost of vehicles are significantly
affected by the LRE weight. Therefore, the engine weight should be
included in the LRE system evaluation. It is usually difficult to
evaluate the engine weight exactly in the preliminary design phase,
however, because the engine geometry is unknown, and the engine
weight can be affected by many other factors [7,8,17]. A series

of approximate weight analysis formulations developed by Zhu
et al. [17] are employed in the present study with some slight
modifications. The weight model is based on parameter analysis of
some existing similar rocket engines and is suitable for weight
estimation for LREs with gas-generator cycles. Using this approach,
the engine weight is determined by summing up the weights of the
thrust chamber, gas generators, valves, turbopumps, and other
miscellaneous components. The model can be expressed by the
following equations, where a, b, c, and d are the corresponding
fitting coefficients.

Thrust-chamber weight:

Mt � a � Fbc � rcc � Pdc (1)

where Fc is the thrust-chamber thrust in vacuum, rc is the thrust-
chamber mixture ratio, and Pc is the thrust-chamber pressure.

Gas-generator weight:

Mg � a � _mb
g � Pc3 (2)

where _mg is the mass flow rate of the gas generator, andP3 is the gas-
generator pressure.

Valve weight:

Mv � a � _mb
v � Pcv (3)

where _mv is the mass flow rate through the valve, and Pv is the valve
inlet pressure.

Turbopump weight:

Mp � a � _mb
p � fcp �Hd

p (4)

where _mp is the mass flow rate of the pump, fp is the pump rotational
speed, and Hp is the pump’s head rise.

Weight of other miscellaneous components:

Ml � a � Fbv � Pc3 (5)

where Fv is the engine thrust in vacuum.
The weight of each component above is approximated by related

factors and component-specific coefficients for which the values are
curve-fit approximations to historical data on existing similar rocket
engines. Since most data on individual engine component weights is
proprietary, Table 1 only lists the total engineweight estimates for the
YF-73 and YF-75 engines, which are both gas-generator-cycle
engines, in comparison with those data published in [18]. The pre-
cision of this model is acceptable for the design optimization of the
LRE system in the preliminary stage of design.

III. Deterministic Optimization of System Parameters

A. Optimization Problem Statement

For the LRE system design, optimization studies are used to select
the best system parameters while satisfying the propulsion system
requirements, which means that the design space should receive
more attention than the objective from the viewpoint of optimization
in this case. Theoretically, all the input parameters for LRE system
analysis, described in Sec. II.A, could be set as design variables.
Engine designers, however, usually show more interest in those
parameters that have primary impact on the LRE system analysis and
optimization. In the present study, the optimization design variables
are the thrust-chamber pressure Pc and mixture ratio rc. The other
input parameters are considered fixed in the optimization process. To
improve the launch capability of rockets, it is useful for engine
designers to increase the engine specific impulse and to decrease the
weight of the engine. Therefore, the optimization objectives are

Table 1 Weight model verification

Case Weight model results [18] data % error

YF-73 engine 222.0 kg 236 kg 5.9
YF-75 engine 585.2 kg 550 kg 6.4
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decided as the maximization of engine specific impulse Ie and
vacuum thrust-to-weight ratio Ne. Meanwhile, boundaries of design
variables and objectives are set as constraints for the optimization.

B. Design Structure Matrix

The design process of LRE system optimization involves the
analytical modules of the thrust chamber, pipelines, valves, pumps,
gas generators, turbines, and engine weight estimation. The inter-
actions among these command-line modules can be conveniently
represented by the design structure matrix (DSM), which is useful as
anMDO technique formultidisciplinary ormultisubsystem analysis.
Figure 1 depicts the DSM for the optimization process in the present
study. In the DSM, each box represents a specific disciplinary or
subsystem analysis. Output from a process is shown as a horizontal
line that exits a box, and input into a process is shown as a vertical line
that enters a box. The offdiagonal circles that connect the horizontal
and vertical lines represent couplings between the two processes.
Circles in the upper triangle of the DSM represent feedforward
couplings, and circles in the lower triangle of the matrix represent
feedback couplings.

In Fig. 1, the part inside the dashed line represents the stationary
performance analysis of an LRE system with gas-generator cycles,
where the thrust-chamber thrust and the turbine-exhaust-gas thrust
are provided by the thrust chamber and the turbines’ simulation
codes, respectively. Note that there are both feedforward and feed-
back circles, whichmeans that the performance analysis process will
be iterative until the sum of the above two thrusts approaches that
required thrust. Once the specific impulse and the associated engine
weight arefinally determined in the simulation process, the optimizer
can calculate the value of the objective function for the LRE system
optimization.

C. Application of Design Framework Package

The typical optimization design process is known as the design–
evaluate–redesign cycle, which involves the iteration of processing
input files, running analysis and simulation codes, and analyzing
output files. To enable such process integration and automation for
the present study, the design processwith all the LRE system analysis
codes is defined as control and data flow in a commercially available
design framework package [19]. Specific parameters and variables
for optimization studies aremapped from the input and output files of
the analysis codes through the graphical user interface of this
framework. Then the LRE optimization design problem is set up
in terms of design variables, objectives, constraints, and the initial

starting point. By using the optimization algorithms and other
techniques incorporated within the framework, the design cycle can
be driven automatically until the design optimization criteria are
satisfied, and thus the best design solution of LRE system parameters
is identified.

Two MDO formulations, MDF and CO, are attempted in the
present work. The following are the detailed methods, techniques,
and results.

D. Multidisciplinary Feasible Method

The MDF formulation is the most basic of MDO approaches and
has wide industry acceptance. Generally speaking, it is easier to find
the optimal solution using MDF as the conventional approach to
solve small-scale MDO problems, such as the present LRE system
design optimization. In addition, the MDF solution is usually con-
sidered as the baseline result to evaluate other MDO formulations
and their modifications. In the MDF formulation, an optimizer is
imposed over the complete multidisciplinary or multisubsystem
analysis, and system feasibility is maintained at each iteration of the
optimization procedure, which means the analysis will be executed
iteratively if there are strong couplings between the disciplines or
subsystems.

Based on the previous procedure of the LRE system analysis, the
MDF formulation can be stated as follows:

Find Pc; rc

min � !1Ie=A � !2Ne=B

subject to Ie � Ie0
F0 � F � F1

re0 � re � re1 (6)

where the objective function is the weighted sum of the engine
specific impulse and the vacuum thrust-to-weight ratio.

To find the global optimal solution, a type of hybrid algorithm,
which combines the genetic algorithm (GA) and sequential quadratic
programming (SQP), is used for the MDF formulation. The GA is
initially applied to conduct an overall search for the design space
of LRE system parameters to identify regions in which the best solu-
tions might lie. Then the SQP is applied, starting from the solution
obtained from the exploratory search, to conduct a more local search
to identify the best solution in the region of interest. Such hybrid
optimization strategy, maintaining advantages of the exploratory
and numerical techniques, is widely used in aerospace applications
[20,21].

As a specific example, a cryogenic-propellant rocket engine using
liquid oxygen and hydrogen with a gas-generator cycle is studied.
The weights of the two objectives are both set to 0.5. The corre-
sponding MDF results are listed in Table 2.

E. Collaborative Optimization

The CO formulation is a bilevel MDO approach, which has both
system- and local-level optimization based on the decomposition
of the problem along the lines of the constituent disciplines or
subsystems. This formulation, developed from the individual disci-
pline feasible method, was originally introduced by Kroo et al. [22].
In the CO formulation, customary disciplinary or subsystem group-
ings are preserved and the concurrent distributed processing for
the subsystem analyses and optimizations is also allowed. For the
purpose of coordinating between subsystems and arriving at an

Fig. 1 Design structure matrix for LRE system with gas-generator

cycles.

Table 2 Optimization solution from MDF formulation

Design variables Parameters Objectives

Case Pc, MPa rc Pf, MPa Po, MPa P3, MPa F1, kN Fc, kN Ft, kN q1 kg=s q3 kg=s Ie s Ne N=kg

Initial values 11.0 6.0 18.2 15.4 9.4 665.0 696.6 1.9 157.8 8.7 428.1 607.8
Optimization values 8.0 5.3 13.2 11.2 6.8 664.5 698.7 1.3 156.8 6.1 439.4 670.9
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optimumMDO solution, the CO formulation creates copies of all the
interdisciplinary coupling variables as additional design variables at
the system level. The system optimizer then uses these copies to send
out design targets to each subsystem. Instead of requiring multi-
disciplinary feasibility at each iteration of optimization, the system-
level feasibility is to be achieved via the compatibility constraints,
which are designed to drive the discrepancies between interdis-
ciplinary coupling variables and corresponding system values to
zero. Therefore, each iteration is feasible with respect to subsystem
analyses but is not multidisciplinary feasible until an optimization
solution is reached using the CO formulation.

In the present study, in order to examine the ability of the CO
formulation to solve LRE system design problems, all the analysis
codes for the gas-generator-cycle engine system are grouped into
three modules according to the main rocket engine components:
thrust-chamber module, gas-generator module, and turbopump
module, which are used to form the corresponding subsystems along
with the optimizations for the minimum discrepancy objective.
Additionally, the parallel processing technique is adopted to save
calculation time and to take full advantage of the module autonomy.

In addition to the two original design variables Pc and rc, eight
interdisciplinary coupling variables were added in the system-level
optimization to compose the design variable vector X for the CO
formulation: the thrust-chamber thrust at altitude F1, the fuel-pump-
outlet pressure Pf , the oxidizer-pump-outlet pressure Po, the gas-
generator pressure P3, the thrust-chamber thrust Fc, the turbo-
exhaust-gas thrust Ft, the chamber mass flow rate q1, and the gas-
generator mass flow rate q3. The system-level optimization objective
is to maximize Ie and Ne, which is the same as the original problem
objective.

In the thrust-chamber subsystem, the design variables are Pc, rc,
and F1. In the gas-generator subsystem, the design variables are
Pc, Pf, and Po. In the turbopump subsystem, the design variables
arePc,Pf ,Po,P3, rc, and q1. The subsystem optimization objectives
are to minimize the discrepancies between target variables and
corresponding subsystem values while satisfying the local
constraints.

The general convergence of the CO formulation has not yet been
completely demonstrated. In some cases, applying CO can suc-
cessfully converge to an optimal solution [23,24], whereas in other
cases, the convergences are not ideal [25–28]. One way to improve
the convergence performance is to relax system-level compatibility
constraints: that is, change compatibility constraints from equality to
inequality constraints [26,28]. Therefore, the CO formulation of
system-level optimization is as follows:

findX

min�!1Ie=A � !2Ne=B

subject to J1 � "1
J2 � "2
J3 � "3
Ie � Ie0

F0 � F � F1

re0 � re � re1 (7)

where J1, J2, and J3 are quadratic compatibility constraints, one for
each subsystem having the form

Ji �
X

j

�xj � x�j �2 (8)

where x�j is the solution of the subsystem optimization problem, and

the relaxation factors "1, "2, and "3 are set to 0.01 here.
Compared with the standard CO formulation, two improvements

are incorporated in the present study to enhance the convergence
performance and exploration ability:

1) The values of subsystem constraints are transferred to the
system-level optimization as additional constraints, so that the
system-level optimization problem will not only coordinate the rela-
tionships of the three subsystem optimizations, but also consider
whether the assigned system-level variable values are reasonable for
subsystem optimizations. This will lead to a quicker convergence of
the system-level optimization.

2) Not all system-level design variables are transferred to each
subsystem; only those used in the subsystem optimization are
transferred to the corresponding subsystem as design targets. Thus,
the numbers of subsystem design variables are different from each
other, which will reduce the dimensions of subsystem optimization
problems.

The CO results for the aforementioned specific example are
tabulated in Table 3. Since the initial values of design variables are
given randomly, the engine specific impulse and vacuum thrust-to-
weight ratio cannot be determined at the initial point. After opti-
mization, all designvariables, including coupling variables, are set to
proper values, and an optimum solution is achieved as well. The
values of system parameters and objectives obtained by applying the
CO formulation are slightly different from those obtained through
the MDF solution, due to the convergence error of compatibility
constraints. As for the total execution time, the CO formulation,
using the hybrid algorithm at system-level optimization and the
gradient-based algorithm at local optimization, takes about 3 h,
which is three times longer than MDF takes to reach an optimal
solution in this case.

F. Multi-Objective Optimization

Multi-objective optimization seeks to determine an optimum
design that involves the minimization (or maximization) of multiple-
objective functions, which are usually in conflict with each other. It is
difficult to optimize all the objectives in an optimization problem.
Comparing objectives directly is prohibited, since they usually have
different measurement units and magnitudes. The expression of the
optimal solution cannot be specifiedmathematically, as the designers
may have different demands on each of objectives.

Various methods of multi-objective processing may find different
solutions to the same problem. All of these solutions are noninferior
solutions, which are also known as Pareto-frontier solutions. Since
the utopian solution cannot be achieved in the multi-objective
optimization, designers usually choose the optimal compromise
solution from the Pareto-frontier solutions according to their own
preferences.

For the hydrogen–oxygen rocket engine example, the variable-
weight method, e-constraint method [29], and neighborhood
cultivation genetic algorithm (NCGA) [30] are adopted to obtain the
Pareto-frontier solutions to the maximization of the engine specific
impulse and vacuum thrust-to-weight ratio.

In the variable-weight method, eight groups of symmetrical
weight factors are used to construct the evaluation function. Figure 2
shows the Pareto frontier obtained by this method, wherein !1 is the
weight of the vacuum thrust-to-weight ratio, and !2 is the weight of

Table 3 Optimization solution from CO formulation

System-level design variables Objectives

Case Pc, MPa rc Pf, MPa Po, MPa P3, MPa F1, kN Fc, kN Ft, kN q1 kg=s q3 kg=s Ie s Ne N=kg

Initial values 11.0 6.0 18.0 15.0 9.0 665.0 697.0 2.0 158.0 9.0 —— ——

Optimization values 8.0 5.3 13.3 11.2 6.9 664.7 698.7 1.4 156.7 6.0 439.8 670.6
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the engine specific impulse. It can be found that evenly changing
the weights does not guarantee the even distribution of the cor-
responding solution on the Pareto frontier.

In the e-constraint method, the objective function is defined to
maximize the vacuum thrust-to-weight ratio as a single object.
Meanwhile, the engine specific impulse is formatted as a constraint,
with its upper limit and lower limit confirmed to be 442.5 s and
427.5 s, respectively, which is defined using themulticriteria tradeoff
analysis approach. Figure 3 shows the Pareto frontier obtained by the
e-constraint method, wherein the Pareto-frontier solutions are
distributed uniformly, as the value of engine specific impulse
constraint is defined evenly. Thus, the e-constraint method can result
in controllable Pareto-frontier solutions.

In the NCGA method, the generation number is set to 50, the
population size is 10, the crossover rate is 1.0, and themutation rate is
0.01. Figure 4 shows the Pareto frontier obtained by NCGA.
Compared with the other two methods, NCGA can find the Pareto-
frontier solutions more effectively and efficiently with respect to the
exploration domain and computational consumption.

Pareto-frontier domains obtained from the above three methods
are different, but the optimization results of the test problem are
approximately consistent in the superposition area. Based on the
Pareto-frontier solutions, methods of ideal point with p-norm [29],

fuzzy related degree [31], and physical programming [32] are used to
acquire optimal compromise solutions. The results are shown in
Table 4.

For this specific cryogenic-propellant rocket engine, the single-
objective optimization value of engine specific impulse is I�e�
443:4 s, and vacuum thrust-to-weight ratio is N�e � 684:7 N=kg.
Figure 5 shows the results of all multi-objective optimization
methods and all multi-objective decisions, which could provide a
reference for engine designers. Note that different multi-objective
decisions have distinct optimal compromise solutions according to
different mathematical theories, but they all lie on the Pareto frontier.
Although there is no priority of the weight factors of the engine
specific impulse and vacuum thrust-to-weight ratio in all themethods
of multi-objective processing, each of the objectives is not optimized
to the same degree, due to the intrinsic characteristics of different
methods.

IV. Reliability-Based LRE System Analysis
and Optimization

In deterministic optimization, the designs are often driven to the
limit of the constraints (also known as the active constraints at the
optimum). These designs may be subject to failure due to inherent
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Table 4 Optimal compromise solutions from different methods

Case Ideal point method with
P-norm (P� 1)

Ideal point method with
P-norm (P� 100)

Fuzzy related
degree method

Physical programming
method

Ie, s 437.7 436.9 443.3 439.0
Ne, N=kg 673.4 674.6 644.9 671.3
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uncertainties, which exist both in the mathematical modeling and
simulation tools, and due to the variability in physical quantities of
the manufacture. The existence of physical uncertainties and model
uncertainties require a reliability-based design analysis and opti-
mization (RBDA&O) to be taken into account. Many researchers
have focused on RBDA&O, and more detailed information can be
found in [33,34].

When the LRE is running in practical application, parameters such
as the thrust-chamber pressure and themixture ratio cannot be a fixed
value. Usually, they will fluctuate within a range. Will the LRE
performance meet the design demand when parameters fluctuate? If
so, what is the reliability? To solve these questions, a preliminary
RBDA&Owas performed on the design of the engine system param-
eters addressed herein.

For the hydrogen–oxygen rocket engine case, two random
variables are defined: thrust-chamber pressure and mixture ratio,
which are also design variables in deterministic optimization. It is
assumed that the random variable variation follows a normal distri-
bution, and both of the variation coefficients, which are equal to the
value of the standard deviation � divided by the mean � for a
specified random variable, are set to 0.33%. This indicates that
thrust-chamber pressure canvary by 0.02–0.03MPa, and themixture
ratio can vary by 0.01–0.02.

Based on the above assumption, the RBDA is first executed on one
of the deterministic design optimum points, and the corresponding
results are shown in Table 5. The reliability of the engine thrust is
0.9998. But the reliability of the engine mixture ratio is 0.498, close
to its lower bound re0, which is too low to satisfy the design demand.
Thus, the RBDO should be performed to improve the design quality.

After the RBDO using the feasible directions algorithm, the LRE
system-design-quality level, especially the reliability of mixture
ratio, has increased. In the assumed variation range, the reliabilities
of the engine thrust andmixture ratio both reach 100%.Table 5 shows
that the engine specific impulse has decreased a little with the
increase in reliability, which means there is a tradeoff between the
reliability and the LRE performance.

V. Conclusions

A general design optimization framework has been developed to
select the best system parameters for LREs with gas-generator
cycles. MDO formulations such as MDF and CO are employed,
evaluated, and compared in the framework. Several methods dealing
with multi-objective problems, resulting in Pareto-frontier solutions
or optimal compromise solutions, are also provided for engine
designers. To obtain the global optimal solution, a hybrid optimi-
zation method combining a genetic algorithm and sequential qua-
dratic programming is used. The system design of a particular
hydrogen–oxygen rocket engine is improved after optimization; for
instance, the specific impulse increased by 2.5% and the vacuum
thrust-to-weight ratio increased by 4.5% using the fuzzy related
degree method. In addition, the framework can execute primary
RBDA&O to enhance the LRE design reliability.
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